Сравнительный анализ лексической насыщенности, лексического разнообразия и многословных выражений в русских, английских и французских юридических текстах: влияние на читаемость и понимание
Table 1 - Data analysis using Lancsbox, Rulingva and TextInspector
PARAMETERS | TTR | LD | - | TTR | LD | - | TTR | LD |
FT1 | 0,75 | 55,41 | RT1 | 0,57 | 71,37 | ET1 | 0,37 | 38,97 |
FT2 | 0,80 | 82,28 | RT2 | 0,58 | 71, 2 | ET2 | 0,40 | 44,13 |
FT3 | 0,79 | 73,57 | RT3 | 0,59 | 70,2 | ET3 | 0,40 | 42,52 |
FT4 | 0,80 | 84,68 | RT4 | 0,6 | 69,29 | ET4 | 0,36 | 38,9 |
FT5 | 0,78 | 65,64 | RT5 | 0,53 | 72,4 | ET5 | 0,40 | 43,57 |
FT6 | 0,79 | 71,79 | RT6 | 0,54 | 71,11 | ET6 | 0,36 | 41,29 |
FT7 | 0,78 | 71,20 | RT7 | 71,37 | 69 | ET7 | 0,37 | 38,39 |
FT8 | 0,76 | 65,07 | RT8 | 0,52 | 69,7 | ET8 | 0,4 | 41,26 |
FT9 | 0,78 | 76,57 | RT9 | 0,56 | 69,24 | ET9 | 0,41 | 43,38 |
FT10 | 0,83 | 106,06 | RT10 | 0,57 | 68,49 | ET10 | 0,35 | 39,72 |
FT11 | 0,81 | 96,06 | RT11 | 0,53 | 69,42 | ET11 | 0,37 | 40,57 |
FT12 | 0,84 | 119,94 | RT12 | 0,51 | 68,68 | ET12 | 0,41 | 42,77 |
FT13 | 0,77 | 62,96 | RT13 | 0,55 | 71,05 | ET13 | 0,39 | 41,26 |
FT14 | 0,80 | 84,68 | RT14 | 0,56 | 67,12 | ET14 | 0,38 | 40,17 |
FT15 | 0,79 | 74,51 | RT15 | 0,56 | 74,64 | ET15 | 0,38 | 44,26 |
FT6 | 0,79 | 71,79 | RT16 | 0,6 | 69,61 | ET16 | 0,33 | 39,3 |
FT17 | 0,78 | 75,29 | RT17 | 0,62 | 71,14 | ET17 | 0,43 | 45,05 |
FT18 | 0,82 | 102,65 | RT18 | 0,61 | 70,53 | ET18 | 0,38 | 41,53 |
FT19 | 0,80 | 81,99 | RT19 | 0,55 | 71,14 | ET19 | 0,37 | 38,98 |
FT20 | 0,77 | 71,66 | RT20 | 0,52 | 68,48 | ET20 | 0,40 | 45,09 |
this table represents the type-token ratio (TTR) and lexical density (LD) of French, Russian, and English UN texts. The categorization of the corpus ranged from text 1 to text 60, in particular, French texts were classified as FT1 to FT20; the same was done with Russian and English texts ranging from RT1 to RT20 and ET1 to ET20. The texts were computed with such tools as Lancsbox, Rulingva, and TextInspector. In addition to TTR and lexical density, we also computed multi-word expressions, more particularly 5-grams of the three languages, using LancsBox. We provided ample information about 5-grams of French, Russian, and English UN texts below