The significance of the theme is conditioned by the importance in the preservation of languages and cultures of minor ethnic groups. Because of lack of material and research in this area, there is particular need and prerequisite of further observation through interdisciplinary analyses. The aim of the paper is to elicit recent database and research on the cultural and language pictures of the world in two related Eskimos languages which are Naukan and Central Yup’ik. For the complete study of conceptual patterns of such language units as colours, interdisciplinary methods, as ethnolinguistic and cognitive analyses as well as comparative and contrastive, have been applied.

As a result of above mentioned methods the language units of colours were compared, initially having attempted to find out significant similarities and differences between them. The outcome of this study shows remarkable linguistic resemblance between two groups of language units. However, the cognitive processes within the comprehension and perception of “color” identification vary in those relative languages, demonstrating completely diverse cultural images of the world.

Keywords: linguistic pictures of the world, Eskimos, Naukan, Central-Yup’ik, concept of color.

Introduction
The study of color perception is widely researched by such scientific disciplines as anthropology, psychology, cognitive linguistics, etc. Particularly, in cognitive studies of linguistics the term “color” is a concept having definite cultural and language background, reflecting ideas and cognition of the environment. Based on these concepts a human or an ethnic group forms linguistic conceptual world/space through which they perceive and comprehend the surrounding world. In the present paper there has been made an attempt to elicit the connection between the world and color perception as well as generation of conceptual space of color in Naukan and Central Yup’ik languages. In theoretical part the general terms and concepts and previous studies of color perception have been defined which is followed by the experimental part where the linguistic units of both languages have been compared and analysed.

Primary studies of cognitive linguistics on the concept of “color” have been done by such pioneers as Shemiakin F. N. in his work “To the issue of relations between a word and clearness of an image” (1960), Korsunkasya T. G., Fridman H.H., Cheremisina M. P. “About the system of color symbols in Russian, English and German languages (1963). Later studies on the issue were implemented by B. Berlin (1969), P. Kay, Hayian Gao (1999), T. U. Svetlichnaya (2003), V. G. Kul’pina, F. A. Tugusheva (2003), A. Timofeeva (2005) and etc.

As defined in the dictionary of cognitive terms by E.S. Kubryakova “concept” is a term explaining the units of mental and psychic resources of the conscience as well as informative structures which convey knowledge and experience of the human. In other words, it is an inforomatory operative unit of the memory, mental lexicon, conceptual systems and the whole world image reflected in the person’s psyche [2]. U. S. Stepanov approaches this issue of analysis of “concept” from the perspective of cultural phenomenon pointing out that “concept” is a basic core of the culture in the mental world of people. Concepts aid and allow people to reserve knowledge about the world being as a constructive element in the conceptual system and assisting the processing of individual experience through the concluded information of determined categories and classifications drawn by the society [5: P. 58].
Therefore if the concept is a unit, including a group of specific features, thus conceptual system is the totality of several concepts whose boundaries can be precisely determined. Regarding the studies of conceptual system of color it could be summed up that, as any concept from the conceptual system, it can be observed through the semantic studies but not only from the perspective of studies of linguistic units: studying the semantics of phraseological or linguistic units bring out those conceptual contrastive measurements of conceptual system of color which cannot be defined through the consideration of linguistic units [4: P. 104]. The concept of color is a complex mental unit existing in a person’s conscience and consolidating all previous experiences by means of comparison and match as well as association of the color with the surrounding world.

J. Locke stated that there should be two overlooks on color: firstly, color given to us in our senses and color as a trait of objects. Nowadays we could assert that color does not exist without the observer [11: P. 146].

J. Lackoff and M. Johnson in their coauthored work “Philosophy in the Flesh: The Embodied Mind and its Challenge to Western Thought” write, “given our bodies and brains have evolved to create colour”. They assume that our experience in color cognition is based on four factors: the length of waves of the reflected light, lighting conditions and two aspects of our organism: firstly, three types of color retorts of eye retina which absorb light waves with various length and secondly, complex nerve chain connected with those retorts [10].

Table 1 – Linguistic units/terms of colours (Naukan and Central Yup’ik)

<table>
<thead>
<tr>
<th>Central Yup’ik</th>
<th>Translation into English</th>
<th>Naukan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cungagliq</td>
<td>Green</td>
<td>kыдыуқкақ</td>
</tr>
<tr>
<td>Kavir(liq)</td>
<td>Red</td>
<td>Қавилге (қавык — красный камень)</td>
</tr>
<tr>
<td>Qater(tuq)</td>
<td>White</td>
<td>Қынақлуге</td>
</tr>
<tr>
<td>Qiug(liq)</td>
<td>Blue</td>
<td>Қыйыпқықтак</td>
</tr>
<tr>
<td>Tungu</td>
<td>Black</td>
<td>таңықк</td>
</tr>
<tr>
<td>Nunapingalnuq</td>
<td>Brown</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>Ginger</td>
<td>Қавирлүңүк</td>
</tr>
<tr>
<td>—</td>
<td>Pink</td>
<td>Қамсыңилңүк</td>
</tr>
</tbody>
</table>

The objective physical features of color have respective linguistic embodiment; color shade is delivered through semantic amalgamation of adjective-colour -concept names meaning basic chromatic colours which reflect in their word definitions [9].

The further study of color perception was conducted by B. Berlin and in the future by P. Kay, emeritus professors of anthropology and linguistics respectively. According to B. Berlin’s work “Basic color terms” he came up with the universal system of color cognition [8]. Initially, having put forward the primary colors which are perceived by one: those are black, white, red, green, yellow and blue (fundamental neural responses (FNR)), he categorised two types of non-primary color categories: composite and derived. The main distinction between these two categories is that composite categories are the fuzzy union of two fundamental neural responses, whereas derived categories are fuzzy intersection of two FNRs [6]. Nevertheless, P. Kay later claimed that some languages can have only two, three or more lexical terms for determining colour units. The idea of having limited lexical terms for colours was preconditioned with small populations without technological advancement [10].

The further study of color perception was conducted by B. Berlin and in the future by P. Kay, emeritus professors of anthropology and linguistics respectively. According to B. Berlin’s work “Basic color terms” he came up with the universal system of color cognition [8]. Initially, having put forward the primary colors which are perceived by one: those are black, white, red, green, yellow and blue (fundamental neural responses (FNR)), he categorised two types of non-primary color categories: composite and derived. The main distinction between these two categories is that composite categories are the fuzzy union of two fundamental neural responses, whereas derived categories are fuzzy intersection of two FNRs [6]. Nevertheless, P. Kay later claimed that some languages can have only two, three or more lexical terms for determining colour units. The idea of having limited lexical terms for colours was preconditioned with small populations without technological advancement [10].

The further study of color perception was conducted by B. Berlin and in the future by P. Kay, emeritus professors of anthropology and linguistics respectively. According to B. Berlin’s work “Basic color terms” he came up with the universal system of color cognition [8]. Initially, having put forward the primary colors which are perceived by one: those are black, white, red, green, yellow and blue (fundamental neural responses (FNR)), he categorised two types of non-primary color categories: composite and derived. The main distinction between these two categories is that composite categories are the fuzzy union of two fundamental neural responses, whereas derived categories are fuzzy intersection of two FNRs [6]. Nevertheless, P. Kay later claimed that some languages can have only two, three or more lexical terms for determining colour units. The idea of having limited lexical terms for colours was preconditioned with small populations without technological advancement [10].

The further study of color perception was conducted by B. Berlin and in the future by P. Kay, emeritus professors of anthropology and linguistics respectively. According to B. Berlin’s work “Basic color terms” he came up with the universal system of color cognition [8]. Initially, having put forward the primary colors which are perceived by one: those are black, white, red, green, yellow and blue (fundamental neural responses (FNR)), he categorised two types of non-primary color categories: composite and derived. The main distinction between these two categories is that composite categories are the fuzzy union of two fundamental neural responses, whereas derived categories are fuzzy intersection of two FNRs [6]. Nevertheless, P. Kay later claimed that some languages can have only two, three or more lexical terms for determining colour units. The idea of having limited lexical terms for colours was preconditioned with small populations without technological advancement [10].

The further study of color perception was conducted by B. Berlin and in the future by P. Kay, emeritus professors of anthropology and linguistics respectively. According to B. Berlin’s work “Basic color terms” he came up with the universal system of color cognition [8]. Initially, having put forward the primary colors which are perceived by one: those are black, white, red, green, yellow and blue (fundamental neural responses (FNR)), he categorised two types of non-primary color categories: composite and derived. The main distinction between these two categories is that composite categories are the fuzzy union of two fundamental neural responses, whereas derived categories are fuzzy intersection of two FNRs [6]. Nevertheless, P. Kay later claimed that some languages can have only two, three or more lexical terms for determining colour units. The idea of having limited lexical terms for colours was preconditioned with small populations without technological advancement [10].

The further study of color perception was conducted by B. Berlin and in the future by P. Kay, emeritus professors of anthropology and linguistics respectively. According to B. Berlin’s work “Basic color terms” he came up with the universal system of color cognition [8]. Initially, having put forward the primary colors which are perceived by one: those are black, white, red, green, yellow and blue (fundamental neural responses (FNR)), he categorised two types of non-primary color categories: composite and derived. The main distinction between these two categories is that composite categories are the fuzzy union of two fundamental neural responses, whereas derived categories are fuzzy intersection of two FNRs [6]. Nevertheless, P. Kay later claimed that some languages can have only two, three or more lexical terms for determining colour units. The idea of having limited lexical terms for colours was preconditioned with small populations without technological advancement [10].

The further study of color perception was conducted by B. Berlin and in the future by P. Kay, emeritus professors of anthropology and linguistics respectively. According to B. Berlin’s work “Basic color terms” he came up with the universal system of color cognition [8]. Initially, having put forward the primary colors which are perceived by one: those are black, white, red, green, yellow and blue (fundamental neural responses (FNR)), he categorised two types of non-primary color categories: composite and derived. The main distinction between these two categories is that composite categories are the fuzzy union of two fundamental neural responses, whereas derived categories are fuzzy intersection of two FNRs [6]. Nevertheless, P. Kay later claimed that some languages can have only two, three or more lexical terms for determining colour units. The idea of having limited lexical terms for colours was preconditioned with small populations without technological advancement [10].

The further study of color perception was conducted by B. Berlin and in the future by P. Kay, emeritus professors of anthropology and linguistics respectively. According to B. Berlin’s work “Basic color terms” he came up with the universal system of color cognition [8]. Initially, having put forward the primary colors which are perceived by one: those are black, white, red, green, yellow and blue (fundamental neural responses (FNR)), he categorised two types of non-primary color categories: composite and derived. The main distinction between these two categories is that composite categories are the fuzzy union of two fundamental neural responses, whereas derived categories are fuzzy intersection of two FNRs [6]. Nevertheless, P. Kay later claimed that some languages can have only two, three or more lexical terms for determining colour units. The idea of having limited lexical terms for colours was preconditioned with small populations without technological advancement [10].

The further study of color perception was conducted by B. Berlin and in the future by P. Kay, emeritus professors of anthropology and linguistics respectively. According to B. Berlin’s work “Basic color terms” he came up with the universal system of color cognition [8]. Initially, having put forward the primary colors which are perceived by one: those are black, white, red, green, yellow and blue (fundamental neural responses (FNR)), he categorised two types of non-primary color categories: composite and derived. The main distinction between these two categories is that composite categories are the fuzzy union of two fundamental neural responses, whereas derived categories are fuzzy intersection of two FNRs [6]. Nevertheless, P. Kay later claimed that some languages can have only two, three or more lexical terms for determining colour units. The idea of having limited lexical terms for colours was preconditioned with small populations without technological advancement [10].
— willow with red bark [13: P. 336] stem from the linguistic term of red color (at least stems of the terms are the same). Furthermore, all mentioned objects have red color.

The terms, associated with the color *cungagliq* — green, are *cungagpaaq* wild green grass, *cungak* — gall; bile [13: P. 228]; with *qater* (tug) — white color are *qaterli, qaterliq* — white thing; arctic fox; *qaterinin* — white parka used for hunting in snow and ice; *qaterqarpagaq* — sclera; white of the eye [13: P. 541]; *Qiugliq* — blue color is assimilated with the following linguistic terms — *qiurqe* — to make bluish; to bruise; *qiuryaq, qiuryak* — northern lights; aurora [14: P. 574]. Nunapingalnguq — brown color which originates from the word nunapik is defined as authentic soil/ground [13: P. 462]. Regarding white and black colours as they are described and originated as verbs describing day and night it can be assumed that as lightening and darkening are actions and movements of day and night, that is the reason why they are of verb (action) origins. With respect to Naukan language concurrence of adjectives of colours and lexical terms of surrounding objects occur rarely due to lack of material and vocabulary [3] which are following: in Naukan language the lexical terms for stone *Кавик* (kaviq) (probably red color) and red color *Кавилге* (kavilge) are similar, as well as the lexical term for the fox derives from the same stem of red color: *Кавилинук* (kavilnuk). The lexical terms for the colour green and grass are identical as well: *Кийуксакук* — the ground is becoming green, the man is getting blue. *Кийук* (kiyuk) — grass and *кыйуххак* (kiyukhkak) — green [3: P. 438, 439].

Conclusion

Thus, having analysed the linguistic units of color terms we could reach the following outcomes of the study:

— Through comparison there has been found apparent resemblance of linguistic units of colour in Naukan and Central Yupi’k dialects.

— The derivation of those units is linked to the objects existing in the particular environment. Moreover, these objects have the same lexical stems with the lexical units of colours.

— However, language units, describing colours are significantly limited, having formants of verbs and nouns (action and object) which proves the hypothesis that these dialects, having environmental restrictions and boundaries, are in the process of their lexicographical expansion.

Конфликт интересов

Не указан.

Conflict of Interest

None declared.

Список литературы / References

Список литературы на английском / References in English
